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1 Coarse expression

It is deduced in the elementary coarse of physics that the ratio of the observed frequency fo of
the electromagnetic wave to the frequency fe emitted by a body moving with the speed ~ve with
respect to the observer being at rest is
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Here ~s(te) is the unit vector of the direction to the emitter at the moment of coordinate time
te when the light was emitted.

If the velocity of the emitter is given in the coordinate system at which the observer is not
at rest, then the expression for the frequency ratio is changed to
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where to is the coordinate time of singal receving
Gravitating bodies also cause the frequency changes. Taking this effect into account and

assuming that the gravitating bodies are not moving, modifies the previous equation this way:
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where summation is done over all gravitating bodies. Assumption that the gravitating bodies
are not moving results in ti = to. At the first approximation taking into account motion of
gravitating bodies can be done in the form of setting ti to the retarded moment of time t′i, which
is a solution of the gravitation null-cone equation:
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I do not have by hand estimates of errors of such an approximation.

2 Refined expression

[Kopeikin and Shaeffer, 1999] derived a rigorous expression for the case when gravitating bodies
have an arbitrary motion.

[to be added in the future.]

3 Computation of the Doppler frequency shift using the coarse

expression

We can re-write expression 3 in this way:
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where
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Expand expression 5 discarding terms of O(c−4):
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According to [Brunmberg, 1999], the velocity of the observer with repsect to the geoctenter,
~vg, is related to its velocity with respect to the barycenter, ~vb, as
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Expanding the expression 7 in series over 1/c retaining terms of 1/c2 and adding contribution
to the metric due to gravitational potential, we get the following transformation:
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where Lb is the metric parameter, Lb = 1.55051976772 · 10−8, if the TDB metric is used.
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